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On the role of rotation in the generation of magnetic fields by fluid motions

By R. Hipg, F.R.S.
Geophysical Fluid Dynamics Laboratory; Meteorological Office (21),
Bracknell, Berkshire RG12 252, U.K.

Y | \

Itis generally accepted that the magnetic fields of planets and stars are produced by the
self-exciting dynamo process (first proposed by Larmor) and that observed near-
alignments of magnetic dipole axes with rotation axes are due to the influence of
Coriolis forces on underlying fluid motions. The detailed role of rotation in the
generation of cosmical magnetic fields has yet to be elucidated but useful insight can
be obtained from general considerations of the governing magnetohydrodynamic
equations. A magnetic field B cannot be maintained or amplified by fluid motion u
against the effects of ohmic decay unless (a) the magnetic Reynolds number
R = ULfqo is sufficiently large, and (4) the patterns of B and u are sufficiently compli-
cated (where U is a characteristic flow speed, L a characteristic length and z and @ are
typical values of the magnetic permeability and electrical conductivity respectively).
Axisymmetric magnetic fields will always decay (a result that suggests that palaeo-
magnetic and archaeomagnetic data might show evidence that departures from axial
symmetry in the geomagnetic field are systematically less during the decay phase of a
polarity ‘reversal’ or ‘excursion’ than during the recovery phase). Dynamo action is
stimulated by Coriolis forces, which promote departures from axial symmetry in the
pattern of u when B is weak, and is opposed by Lorentz forces, which increase in
influence as B grows in strength. If equilibrium is attained when Coriolis and Lorentz
forces are roughly equal in magnitude then the system becomes ‘ magnetostrophic’ and
the strengths of the internal and external parts of the field, B; and B. respectively,
satisfy By S BsRYand B, < BsR%if By = (p(2+ UL)/5)} ~ (pR2/7)3, (p being the
mean density of the fluid and £ the angular speed of rotation). The slow and dispersive
‘magnetohydrodynamic inertial wave’ with a frequency that depends on the square
of the Alfvén speed | B|/(up)? and inversely on 2 exemplifies magnetostrophic flow. Such
waves probably occur in the electrically conducting fluid interiors of planets and stars,
where they play an important role in the generation of magnetic fields as well as in other
processes, such as the topographic coupling between the Earth’s liquid core and solid
mantle.

THE ROYAL A
SOCIETY \

PHILOSOPHICAL
TRANSACTIONS
OF

p
[\ \

1. INTRODUCTION

—
The magnetic fields of the Earth and Sun and of other magnetic planets and stars are thought to

S g g p g
> be due to electric currents flowing within their interiors. It is now accepted that these currents
oH g p

43 are largely maintained against the effects of ohmic dissipation by electromotive forces due to
[~ gely g P y
mQ motional induction, as Larmor first pointed out in his pioneering paper on self-exciting fluid
O dynamos. The fluid motions involved are produced in most (if not all) cases by the action of
= uw

gravity on density inhomogeneities.

Theoretical studies of the flow of electrically conducting fluids — ‘magnetohydrodynamics’
or ‘hydromagnetics’—are based on the highly nonlinear equations of hydrodynamics, thermo-
dynamics and electrodynamics (see § 3). Dynamo models treated on the basis of all these equations
are often referred to us ‘magnetohydrodynamic dynamos’. But most progress to date has been
made with the study of ‘kinematic dynamos’ for which the field of fluid flow is postulated a prior:
and non-decaying solutions sought of the electrodynamic equations alone (see §2).
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224 R.HIDE

The mathematical analysis of dynamo models is complicated by the finding that suitable
departures from axial symmetry are required for dynamo action to occur (see (2.10)). This
follows from existence theorems in kinematic dynamo theory (for reference see, for example,
Moffatt 1978; Parker 1979) and the recent extension of Cowling’s theorem (Hide & Palmer 1982)
showing quite generally:

Fluid motions cannot prevent the ohmic decay of a magnetic field that retains an axis of
symmetry. ' (1.1)

This result (which suggests, incidentally, that palacomagnetic and archacomagnetic data might
show evidence that departures from axial symmetry are systematically less during the decay
phase of a geomagnetic polarity ‘reversal’ or ‘excursion’ than during the growth or recovery
phase (see Hide 19814)) provides a useful starting point for discussing how rotation affects the
generation of magnetic fields by the dynamo process.

Order of magnitude estimates of the various terms in the dynamical equations (see § 3 below)
show that flows associated with typical natural dynamos are strongly influenced by Coriolis
forces due to general rotation. Itis through the analysis of this influence of Coriolis forces that the
explanation of the near-alignment of the rotation and magnetic dipole axes of the Earth, Jupiter,
Saturn, etc., and other properties of the magnetic fields must be sought. But further work on the
magnetohydrodynamics of rapidly rotating fluids will be needed before the role of rotation in the
production of cosmical magnetic fields can be fully elucidated. Details of investigations in this
important but highly mathematical branch of geophysical fluid dynamics together with references
to early work can be found in several recent publications (see, for example, Moffatt 1978;
Roberts & Soward 1978; Busse 1978, 1979; Parker 1979; Stevenson 1979; Braginskiy 1980;
Krause & Ridler 1980; Soward 1982). The purpose of the present paper is to outline certain
general properties of flows that are strongly influenced by Coriolis forces due to general rotation
and Lorentz forces due to the presence of electric currents within the fluid. These properties
follow more or less directly from the governing equations (see §§3 and 4) and they can serve
among other things as a guide to the more technical literature.

Possibly the most significant of these properties for dynamo studies is the result (see (3.10)
below):

Rapid rotation promotes departures from axial symmetry in the pattern of fluid motions when the
magnetic field is weak. (1.2)

Coriolis forces can thus stimulate the amplification of a weak magnetic field by producing
departures from axial symmetry in the pattern of fluid motions. As the magnetic field increases in
strength so does the Lorentz force (see equation (3.4)), and it is possible that the amplification
of the magnetic field cannot continue beyond the point at which the Lorentz force is typically
comparable in magnitude with the Coriolis force. This hypothesis provides a basis for estimating
the ultimate strength obtained by the magnetic field and leads to predictions that are con-
cordant with observations (Hide 1974; see also § 4).
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2. BASIC EQUATIONS: ELECTRODYNAMICS

Consider a connected body of electrically conducting fluid ¥ bounded by a surface §, with
surface element dS. The linkage with §, of a magnetic field B that pervades the conducting
fluid and the surrounding space is defined as the essentially non-negative quantity

M&upaﬂgwdm. (2.1)

In the absence of permanent magnets, B is due entirely to electric currents of density j and in the
self-exciting dynamo the electromotive forces that produce these electric currents are provided
by motional induction, involving fluid motions within Vj with Eulerian velocity u. By this means
some weak adventitious seed field can be amplified and maintained against the effects of ohmic
decay. If the fluid motions were suddenly to cease, N(S,; t) would decay on a timescale O(7q)
where 74 1s the ohmic decay time based on a characteristic length L of the order of the dimensions
of ¥y (see equation (2.11) below). For the Earth’s liquid electrically conducting core 74 lies
somewhere between 104 and 10° years; for the cores of Jupiter and Saturn 74 could be somewhat
longer, possibly 108 or 107 years, but still short compared with the presumed ages of the magnetic
fields of these planets, in excess of 10° years.

Dynamo action can be said to occur in a theoretical model when the magnitude and con-
figuration of u and B are such that over the long but otherwise arbitrary interval ¢ = ¢, to ¢ = ¢,
(where ¢, —t, greatly exceeds the ohmic decay time 74 (see equation (2.11)),

@—m{ﬁmN@nymw<a (2.2)

This criterion has advantages over proposals based on total magnetic energy or equivalent
magnetic moment, which can be ambiguous when B has toroidal as well as poloidal components
or when the conducting fluid is not incompressible (see Hide 1981 5; Hide & Palmer 1982). We
consider first the electrodynamic equations required in the formulation of theoretical models.

These are Gauss’s law
V-B=0 (2.3)

ﬁLBdS:O

taken over any closed surface S; cf. equation (2.1)), Faraday’s law

(which implies, of course, that

0B/0t+V X E = 0, (2.4)
and Ampere’s law
Vx (u'B) =, (2.5)
together with Ohm’s law
j=o(E+uxB), (2.6)

where E is the electric field in the basic frame of reference and E +u x B is the electric field
experienced by a fluid element moving with velocity u relative to that frame. The magnetic
permeability # and electrical conductivity o are scalars but they may be functions of position
and time.

When E and j are eliminated from these equations it is found that

OB/0t = =V x (071V x (#~'B)) +V x (u x B). (2.7)

15 Vol. go6. A
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226 R.HIDE

By multiplying this equation scalarly by d§ integrating the resulting expression for o |B-dS| /ot
over the general closed surface S it may be shown that

dN(S; £)/dt = — 23, ffo[a—lv « (4~'B) + (v—u) x B]-dC (2.8)

if v denotes the motion of a general point on § (see Hide 1981 4). The line integrals are taken
over all the one or more closed curves C, vector element of length dC, on § where B-dS = 0,
in the sense that keeps the neighbouring region where B-dS is positive (negative) on the left
(right) when moving in the direction of dC. When § is any material surface $’ we have
(v—u)-dS = 0 everywhere on §’; whence (v —u) x B-dC = 0 and

AN(S’; £)/dt = — zsz o1V x (41B)-dC = ‘2Zf}€ o-1j-dC. (2.9)
C (o}

Dynamo action requires high electrical conductivity (see equation (2.13) below), but equation
(2.9) shows that it cannot occur in a perfect conductor, since dN(S’; ¢) /d¢ = 0 when o=t = 0.

As we have already noted, the mathematical difficulties presented by the full magneto-
hydrodynamic dynamo problem are so severe that most studies to date have been concerned
with kinematic dynamo problems of obtaining non-decaying solutions of equation (2.7) when
u is specified a priori. Such solutions can be found, but only when (a)

u and B are sufficiently complicated in form (there being only decaying solutions when the
configurations of u and B possess a common axis of symmetry) (2.10)

(cf. (1.1)), and (b) the ohmic decay time 74 i3 so long in comparison with the advective time

scale 7,, where
Tq = Lie; 1,=LJU, (2.11)

that the so-called ‘magnetic Reynolds number’

R=ULpo = 14/7a (2.12)
satisfies
R > R,, (2.13)

where R, is typically between 10 and 102. (Here U, L, zi and @ are typical value of the flow speed,
length scale, magnetic permeability and electrical conductivity, respectively.)
Kinematic dynamo studies have called attention to the role of the helicity of the motion

H=u-Vxu (2.14)

in the amplification process. This pseudo-scalar quantity is easy to visualize when it is expressed
as the sum of three contributions, each proportional to the rate of change with respect to one of
the Cartesian coordinates x; (i = 1, 2, 3) of the direction made by the projection of u on the local
(x5, %) (J = 2,3,1; k = 3,2, 1) plane perpendicular to the «; axis. Thus

3 2 oy 0 1 (4
H= 3 H; where H;=—(uj+ui)s—tan={=). (2.15)
e

T axi uj

This form of H also has certain physical advantages when dealing with large-scale fluid motions
that depart but little from rigid body rotation relative to an inertial frame having angular
velocity 2 about one of the coordinate axes, say x3, and are therefore dominated by Coriolis


http://rsta.royalsocietypublishing.org/

JA

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s
N\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE ROLE OF ROTATION 227

forces (see § 3). A major contribution to H is then provided by H;, which satisfies the following
equation (Hide 1976):

H, % 5o{(u- g) (2-V0) — (u-V0) (2- £)
Lue ng/dt)+mf“)—(Vx (V x (4~1B) x B)) (2.16)

(where g denotes the acceleration due to gravity and centripetal effects, u the fluid motion
relative to the rotating frame and p6 the departure of the nearly uniform density from its mean
value p). The first term on the right-hand side of equation (2.16) is zero in the absence of
buoyancy forces associated with density variations; the second term is zero when the precessional
term vanishes (i.e. when d€/dt is either zero or parallel to 2); and the third term is zero when
there are no Lorentz forces.

3. Basic EQUATIONS: MAGNETOHYDRODYNAMICS

The full dynamo problem requires the simultaneous solutions of the equations of electro-
dynamics, thermodynamics and hydrodynamics. The equations of electrodynamics give

V:B =0 (3.1)
and OB/dt+ (u-V) B~ (B-V)u = (uo)-1V2B (3.2)

when o and u are constant (see equations (2.3) and (2.7)). The equations of thermodynamics
(see, for example, Gubbins & Masters 1979) comprise an equation of state relating the density
p = p(1+6) to the pressure p, temperature and chemical composition, together with equations
governing the advection and diffusion of heat and variations in chemical composition. The
equations of hydrodynamics express continuity of matter and momentum balance of individual
fluid elements. The first of these, Dp/Di+pV-u = 0 (where D/Dt = 8/0t+u- V), reduces to

Veu =0, (3.3)

when dynamical effects of fluid compressibility are negligible. The momentum equation

p(-l—)—u+29><u—-r><gi2) =—Vp+gp—Vx(vpVxu)+Vx(u'B)xB

Dt de
reduces to its Boussinesq version 2Qxu+VP = A, (3.4a)
where VP=V(P/p)—¢g
_ Du dQ o, U(B-V)B—-V(B%/2)}
and _—Dt+r><—d—£+g0+vVu+ P (3.40)

when the kinematic viscosity v is constant, g greatly exceeds the other acceleration terms and
fractional density variations @ are very much less than unity. Taking the curl of equation (3.4 4)
gives the vorticity equation expressing the local balance of angular momentum of an individual

(22-V)u=-VxA, (3.5q)
where  VxA = —D¢/Dt+(&-V)u—2dQ/dt—g x VO +vVE+ (up)~'V x (B-V)B  (3.5b)
if¢ =Vxu.

fluid element; thus

15-2
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Magnetostrophic and geostrophic flows

Order of magnitude estimates of the various terms in equations (3.4) and (3.5) applied to
motions in the Earth’s liquid core indicate that the relative acceleration term Du /D¢ = 0u /0t +
(uV)u and the viscous term »V2u are many orders of magnitudeless than the Coriolis term 22 x u.
When the precessional term is also negligible we have the case of magnetostrophic flow, with

A= An = g0+ (up) " {(B-V) B-V(B*/2)} (3.60)
and VxA=VxA,=—-gxV0+(up)1Vx (B-V)B. (3.60)

When, in addition, the Lorentz term is negligible in comparison with the Coriolis term we have
the case of geostrophic flow, with A=Ag= g0 (3.7a)

and VxA=VxAg=—gxVé. (3.70)

The vorticity equation (3.5) then yields the ‘ thermal wind equation’
(22-V)u = gx Vo (3.8)
in the ‘baroclinic’ case (g x VO # 0), which reduces to the Proudman-Taylor theorem
(22-V)u =0 (3.9)

in the ‘barotropic’ case (g x V& = 0), when surfaces of equal density coincide with geopotential
surfaces.

Equations (3.8) and (3.9) are succinct expressions of the powerful gyroscopic constraints on
the motion of a fluid of low viscosity that departs but little from solid body rotation with steady
angular velocity 2 when Lorentz forces are negligibly small. Studies of such flows are important
in dynamo theory because they provide insight into the initial stages of the amplification process,
when Lorentz forces would indeed be small. Equation (3.4) with A = A, (see equation (3.7))
leads to the important result (cf. (1.2)):

The hydrodynamical motion of a fluid of low viscosity that departs only slightly from steady rapid
rigid-body rotation will not in general be symmetric about the rotation axis, even when the
boundary conditions are axisymmetric. (3.10)

The validity of this result (which provides the most direct explanation of the occurrence of
large-scale non-axisymmetric disturbances in the Earth’s atmosphere and other natural systems)
is readily verified by laboratory experiments. The result can be deduced as follows. In cylindrical
co-ordinates (7, ¢, z) where 2 = (0, 0, L) the second component of equation (3.4) is:

4, = (2Q)71 {~r10P/0¢ + (A)} (3.11)

(since (g)y = 0 by the assumption of axial symmetry in the boundary conditions), where (A),
denotes the ¢ component of A. Now, over any cylindrical surface of radius 7 the rate of advective
transport M(r,t; @) of any quantity @ (per unit volume), such as heat, angular momentum,
etc., is given by

M(1,5; Q) =f:f:"u,.Qrd¢dr=Eléfziafozu{—%+r(A)¢}Qd¢dz. (3.12)

Since the contribution (A), to equation (3.11) decreases rapidly with increasing £, advective
transport perpendicular to the axis of rotation, as measured by M(r,t; @), will be negligible
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unless the flow pattern departs significantly from axial symmetry. In the axisymmetric case we
have 0P/0¢ = 0 and M(r,¢; Q) of the order of the small ageostrophic contribution.

This argument is the basis of (3.10). There may be singular cases when the flow remains
axisymmetric and in consequence advective transfer perpendicular to the rotation axis is
negligible. Indeed, such cases can be realized in the laboratory by taking certain special pre-
cautions, but the general conclusion from laboratory experiments is that (3.10) is a correct
inference from the geostrophic equation. .

There is a further property of equation (3.4) with A = A, that leads to a useful general
prediction. The equation is mathematically degenerate; being lower in order than the full
equation to which it is a leading approximation when £ is large, it cannot be solved under all the
necessary boundary conditions. For this to be possible every term in A must be included in the
analysis, which implies:

Regions of highly ageostrophic flow occurring not only on the boundaries of the system but also
in localized regions (detached shear layers, jet streams, etc.) of the main body of the fluid are
necessary concomitants of geostrophic motion. (3.13)

Within these highly ageostrophic regions, p Du/D¢+V x (pvV x u) is comparable in magnitude
with 202 x u; the corresponding relative vorticity & = V x # can be comparable with or even
exceed 282 in magnitude. Many examples of such vorticity concentrations are found in the
laboratory and in Nature.

We have seen that slow relative hydrodynamical flow in a rotating fluid of low viscosity will in
general be non-axisymmetric (see (3.10)). Laboratory studies show that there are two non-
axisymmetric régimes of thermal convection in a rotating fluid annulus subject to differential
heating in the horizontal, one highly regular (i.e. spatially and temporally periodic) and the
other, which is reminiscent of large-scale flow in the Earth’s atmosphere, irregular. Thus when
the basic rotation rate 2 of the fluid annulus exceeds a certain value 2y, Coriolis forces inhibit
axisymmetric overturning motions in meridian planes and promote a completely different kind
of motion, which has been termed ‘sloping convection’. The motion is then non-axisymmetric
and largely confined to jet-streams, with typical trajectories of individual fluid elements inclined
at small but essentially non-zero angles to the horizontal. The kinetic energy of the non-axisym-
metric flow derives from the interaction of slight upward and downward motions in these sloping
trajectories with the potential energy field produced by the action of gravity on the density
variations produced by the applied differential heating. The kinetic energy of the motion is
dissipated by friction arising in boundary layers on the walls of the container and in the main
body of the fluid. The critical value Q2 of the rotation speed is of course dependent on many
parameters, including the acceleration of gravity, the shape and dimensions of the apparatus, the
coefficients of thermal expansion, thermal conductivity and viscosity of the fluid and its mean
density, and the distribution and intensity of applied differential heating. This dependence has
been determined by extensive laboratory studies and interpreted on the basis of stability theory.

Provided that £, though greater than £y, does not exceed a second critical value £5, the main
features of the non-axisymmetric motion are characterized by great regularity and the heat flow is
virtually independent of £ and some 20 9 less than when 2 = 0. This regular flow is either
steady (apart from a slow steady drift of the horizontal flow pattern relative to the walls of the
container) or it exhibits periodic ‘vacillation’ in amplitude, shape and other characteristics.
The number of ‘waves’ m around the annulus is not uniquely determined by the impressed
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230 R.HIDE

conditions; the flow is found to be ‘intransitive’ owing to the occurrence of what are now called
‘multiple equilibrium states’. But the most likely value of m tends to increase with increasing £,
and when 2 = ©;, m has that value for which the azimuthal scale of the horizontal flow pattern
is about 1.5 times the radial scale and the flow undergoes a transition to irregular flow or
‘geostrophic turbulence’. When 2 > ©2; we have the irregular flow régime, for which heat flow
decreases with increasing .

The behaviour just described is now known to be typical of a wide variety of dynamical
systems, where large-scale motions can be highly regular under some impressed conditions and
highly irregular under other conditions (see, for example, Haken 1981; Hide 1981¢, 1982). Both
types of large-scale flow can occur in natural systems and are therefore of interest in the theory of
magnetic field generation by dynamo action. Underlying mechanisms are not yet fully under-
stood but it is likely that one important role of Coriolis forces is to render the flow highly aniso-
tropic. Energy transfer between different scales of motion within such flows contrasts sharply
with that which occurs in isotropic flows, where nonlinear interactions can produce a ‘cascade’
of energy towards the smallest scales of motion and render the system highly chaotic (i.e.
turbulent). Such cascades cannot occur in typical anisotropic flows unless they are accompanied
by a simultaneous energy transfer to the largest scales available.

4, MAGNETOSTROPHIC FLOWS

Setting = 1 in equation (3.12) leads to a useful general result which, when applied to the
magnetostrophic case, reduces to the expression for the constraint on B first noted by Taylor
(1963), namely that over any cylindrical surface coaxial with the rotation axis, B must be such
that

f:f:"{(vw) x B}, rdgdz = 0. (4.1)

The term in equation (3.12) involving P vanishes when @ = 1 because P is single valued.
M(r,t; @) is negligibly small when @ = 1 because, by considerations of continuity, M(r, #; 1)
is equal to the volume flux across the surfaces z = z,(r) and z = z,(r); this depends on boundary
layer suction, which vanishes in the limit of zero viscosity. It follows that

f J : (202)1 (A),rdgdz = 0 (4.2)

and this reduces to Taylor’s result (see equation (3.1)) in the magnetostrophic case when A = Ap,
(see equation 3.6a)), since g has no ¢ component.

Let us now consider the problem of deducing from first principles the strength of the magnetic
field produced by dynamo action, denoting by B. the average field strength just outside the
dynamo region and by B; the average strength of the field within the dynamo region. This
difficult problem has not yet been solved but it has been discussed by several investigators (for
references see Jacobs 1975; Parker 1979). In an attempt to set useful limits on B, and B; Hide
(1974) has argued on the basis of general considerations of equations (3.2) and (3.4) that
the magnetic field is unlikely to build up beyond that value for which the Lorentz torque
pV x (V x (#71B) x B) acting on an individual fluid element is unlikely to exceed the accelera-
tion term V x (Du/Dt+ 2R x u), which reduces to V x (22 x #) in the magnetostrophic limit.
From this, Bj satisfies Bi < BsRY, (4.3)
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where R is the magnetic Reynolds number (see equation (2.12)) and Bs is the ‘scale magnetic
field strength’, Bs = (p(Q+ UL /o, (4.4)

which reduces to (p£2/)}% in the magnetostrophic limit when U/LQ < 1. The ratio of the
magnetic to kinetic energy implied by equation (4.3) is given by

BY/uU? = QL/U +1. (4.5)

This is very much greater than unity when U/LQ < 1, as in the case of a typical planetary
dynamo.

Now, although the rate of generation of total magnetic energy by the dynamo mechanism, and
hence B, is expected to increase with increasing electrical conductivity o, the strength B, of the
external magnetic field produced by the dynamo (and this is the only part of the field we are able
to observe) should decrease with increasing o when o is large, with Be vanishing altogether when
o is infinite, for it is impossible to change the magnetic flux linkage of a perfect conductor (see
equation (2.9)). It can therefore be supposed that

Beo/B; ~ R4, (4.6)
where the index ¢ is essentially positive and possibly close to unity. Hence
Be < BsRO—202 = B, ' (4.7)

B is thus an upper limit to the strength of the magnetic field just above the fluid region where
dynamo action is taking place. If ¢ & 1, then B, satisfies

BsR-% ~ B. < BsR?. (4.8)

Corresponding expressions for the equivalent magnetic moment can be obtained from equations
(4.7) and (4.8) by multiplying by the cube of an appropriate length. Taking as typical values for
the core of the Earth

Q ~ 10~*rads™!, p~ 10*kgm=3, Tx3x105Sm-!, U= 10*ms!, and L ~ 10%m,

we find that U/LQ ~ 10-¢ and Bs ~ (pQ2/7)} = 2x 10-3T(20G). Accordingly, by equations
(4.3) and (4.8) we have
B; $ 102T(100G); Be < 4x 104T(4G)

if we assume that, in accordance with kinematic dynamo studies, R ~ 25. Now, the mainly
dipolar field of 5 x 10-5'T(0.5 G) at the surface of the Earth implies that the average field strength
Just outside the core, B, is less than about 10-3T (10 G). This falls within the preferred range of
B, implied by the above discussion. So far as the value of B; for the Earth’s core is concerned, this
cannot be inferred directly from geomagnetic observations. But various lines of evidence indicate
that the magnetic field throughout the main body of the core might be largely toroidal in con-
figuration, with the lines of force lying approximately on horizontal surface, and ca. 10-2T (100 G)
in strength (see Hide & Roberts 1979), which is also concordant with the above calculation.

By Faraday’s law the magnetic flux linkage of a perfect conductor cannot change so that
effects due to ohmic dissipation are central to dynamo theories of the generation of the external
magnetic field (see equation (2.9) above). On the other hand, such effects may not be of primary
importance when dealing with some aspects of the motions themselves and their neglect leads to
a considerable simplification of equation (2.7) (see also equation (3.2)), which then reduces to

OB/dt+ (u-V)B—(B-V)u = 0, (4.9)
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Alfvén’s celebrated ‘frozen field’ theorem. The mathematical difficulties involved are still severe,
especially when realistic boundary conditions are taken into account, and their discussion lies
beyond the scope of this article (for references see Soward 1982). Fortunately, some of the main
dynamical processes are exemplified by the properties of small-amplitude plane waves with
angular frequency w and vector wavenumber k propagating relative to a fluid that rotates
uniformly with steady angular velocity £, is pervaded by a uniform magnetic field B, and within
which there is a uniform vertical density gradient pdf,/dz, where z is the downward vertical
coordinate. The dispersion relationship for these waves is

W = on + 30} + o; £ {(0f +u))* + don 07H] (4.10)

where Wl = (By k)2 up; of = — (gx k)2 (d0,/dz) k2 of = (2Q-K)2/k2 (4.11)
In the three cases when all but one of the quantities 02, »? and ©? is equal to zero, we have

0 =0k, 0®=0® or =0l (4.12)

The first of these expressions is the dispersion relation for ordinary Alfvén waves, where the
restoring force is provided entirely by the magnetic field and there is on average equipartition
between kinetic and magnetic energy. These waves are non-dispersive and linearly polarized.
The second expression is the dispersion relation for inertial waves, where the restoring force is
provided by Coriolis effects. These waves are highly dispersive, circularly or elliptically polarized
and less than or equal to 2@ in frequency. The third expression in the dispersion relation for
internal gravity waves, where buoyancy forces provide the restoring force when d6,/dz is positive
(and promote convective overturning when d6,/dz is negative). These waves are highly dispersive
and linearly polarized and less than or equal to (—gd6,/dz)? in frequency.

In general there are two modes according to whether the upper or lower sign is taken in
equation (4.10); we designate these as the ‘fast’ and ‘slow’ modes and their frequencies by v,
and w_ respectively, which satisfy

0% o = 0k (0l + o) (4.13)
for all values of w?. When w? = 0 we have
0* = 0 + o] £ {0f + 40} 07}] (4.14)
and 0L o? = i (4.15)
In the case when rotational effects are weak, notably when o? < 202, equation (4.14) gives

wﬁ— = w?n(1+lwr/wml); 0 = w12n(1_|wr/wml)’ (4'16)

which correspond to ordinary Alfvén waves very slightly modified by Coriolis forces.

At the other extreme, when ©? > 20?2, and this is the case of most interest when dealing
with waves in the core of the Earth on scales of more than a few hundred kilometres, Coriolis
forces are so strong that the two roots of equation (4.14) can have quite different values:

0% =0k 0L = 0l /ol (4.17)

This extreme ‘frequency splitting’ due to rotation is accompanied by other effects, notably wave
dispersion, circular or elliptical polarization of the trajectories of individual fluid elements, and
imbalance of kinetic energy (the whole of which is now associated with the fast inertial wave) and
magnetic energy (now entirely in the slow ‘ magnetohydrodynamic inertial” wave).
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When equations (4.17) are satisfied, the period of the inertial mode 2n/w, is then typically
more than aboutn/Q (i.e.afew days), whereas that of the magnetic mode 2n/w_is ca. 2nQ2L%up/ B2,
which for the Earth’s core when L ~ 108 mis 10195 (300 years) and therefore comparable with the
timescale of the geomagnetic secular variation. This is the quantitative basis of the theory of the
geomagnetic secular variation that interprets its general timescale and westward drift in terms of
magnetohydrodynamic oscillations of the liquid core. (The electrical conductivity of the overlying
‘solid” mantle, though weak, would be sufficient to prevent magnetic changes in the core on the
shortest timescale of the inertial modes from penetrating to the Earth’s surface.) These oscilla-
tions should play an important role in the dynamo process and also in the electromagnetic and
topographic coupling between the liquid core and overlying solid mantle that has been
invoked to account for the so-called decade variations in the length of the day (for references see
Braginskiy 1980; Hassan & Eltayeb 1982).

The root corresponding to the magnetohydrodynamic inertial wave could have been obtained
directly by using the magnetostrophic version of equations (3.4), a procedure that eliminates
solutions corresponding to inertial waves from the system of equations ab initio (just as the use of
equation (3.3) acts as a filter for sound waves in the analysis). When g x V8 = 0, there is a balance
of Coriolis and Lorentz couples acting on individual fluid elements (see equations (3.5) and (3.6)),
so that the ratio of amplitudes of the velocity and magnetic fields associated with the wave is
By/QLup. By equation (4.9) this ratio is also equal to LB,7_, where 7_ = 2n/w_, the period of the

wave; whence
7_ =~ QL%up/ B2, (4.18)

which is ca. {Q2L/By(up)—#}? (about 105 for the core of the Earth) rotation periods (‘days’) of the
system and ca. 2L/ By(up)~* multiplied by the time taken for an ordinary Alfvén wave to traverse
a distance equal to the characteristic length scale L.

5. CONCLUDING REMARKS

I have outlined certain general properties of flows that are strongly influenced by Coriolis
forces and Lorentz forces which can be deduced in a fairly straightforward way {rom the basic
equations of magnetohydrodynamics. In preparing this brief survey, no attempt has been made
to do full justice to the extensive important work that has been done on the magnetohydro-
dynamics of rotating fluids and dynamo theory, but references to articles describing original work
and the development of ideas can be found in the reviews cited in the reference list. My remarks
here are addressed primarily to those participants in this Discussion Meeting who are concerned
with the structure and evolution of the Earth’s core and more practical aspects of the study of
geomagnetism, in the hope that the remarks can serve as a guide to the more technical and often
highly mathematical literature describing the theory of the generation of cosmical magnetic
fields by the self-exciting dynamo process.

RerereNcEs (Hide)

Braginskiy, S. I. 1980 Geophys. Astrophys. Fluid Dyn. 14, 189-208.

Busse, F. H. 1978 A. Rev. Fluid Mech. 10, 435-462.

Busse, F. H. 1979 Phys. Earth planet. Inter. 20, 152—-157.

Gubbins, D. & Masters, T. G. 1979 Adv. Geophys. 21, 1-50.

Haken, H. (ed.) 1981 Chaos and order in nature. (275 pages.) Berlin, Heidelberg and New York: Springer-Verlag.


http://rsta.royalsocietypublishing.org/

\

/\
\\
Vo

7\
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a
/) \
/4 \ \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

234 R.HIDE

Hassan, M. H. A, & Eltayeb, 1. A. 1982 Phys. Earth planet. Inter. (In the press.)

Hide, R. 1974 Proc. R. Soc. Lond. A 336, 63-84.

Hide, R. 1976 Geophys. Astrophys. Fluid Dyn. 7, 157-161.

Hide, R. 1981a Nature, Lond. 293, 728-729.

Hide, R. 19816 J. geophys. Res. 86, 11681-11687.

Hide, R. 1981¢ Met. Mag. 110, 335-344.

Hide, R. 1982 Q. JI R. astr. Soc. (In the press.)

Hide, R. & Palmer, T. N. 1982 Geophys. Astrophys. Fluid Dyn. 19, 301-309.

Hide, R. & Roberts, P. H. 1979 Phys. Earth planet. Inter. 20, 124-126.

Jacobs, J. A. 1975 The Earth’s core. (253 pages.) London: Academic Press.

Krause, F. H. & Radler, K.-H. 1980 Mean field magnetohydrodynamics and dynamo theory. (271 pages.) Berlin:
Akademie Verlag; Oxford: Pergamon Press.

Moffatt, H. K. 1978 Magnetic field generation by fluid motions. (343 pages.) Cambridge University Press.

Parker, E. N. 1979 Cosmical magnetic ficlds. (841 pages.) Oxford: Clarendon Press.

Roberts, P. H. & Soward, A. M. (eds) 1978 Rotating fluids in geophysics. (551 pages.) London and New York:
Academic Press.

Soward, A. M. (ed.) 1982 Stellar and planetary magnetism. New York: Gordon & Breach. (In the press.)

Stevenson, D. J. 1979 Geophys. Astrophys. Fluid Dyn. 12, 139-169.

Taylor, J. B. 1963 Proc. R. Soc. Lond. A 274, 274-283.


http://rsta.royalsocietypublishing.org/

